Packet Tracer. Устранение проблем. Документирование сети

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
ПК 1	NIC			
∏K 2	NIC			
ПК 3	NIC			
ПК 4	NIC			
ПК 5	NIC			
ПК 6	NIC			
ПК 7	NIC			

Задачи

Часть 1. Проверка связи

Часть 2. Поиск сведений о настройках ПК

Часть 3. Поиск сведений о настройке шлюза по умолчанию

Часть 4. Поиск сведений о маршрутах и соседних устройствах в сети

Часть 5. Графическое представление топологии сети

Исходные данные/сценарий

Данное задание охватывает действия, выполняемые для обнаружения сети прежде всего с помощью Telnet и команд show cdp neighbors detail и show ip route. Это первая часть задания, состоящего из двух частей. Вторая часть задания — Packet Tracer. Поиск и устранение неполадок. Использование документации для решения проблем.

Топология, выводимая при открытии задания Packet Tracer, не содержит всех сведений о сети. Часть информации скрыта с помощью функции управления кластером Packet Tracer. Сетевая инфраструктура свернута, и топология в файле содержит только оконечные устройства. Ваша задача — используя свои знания о сетевых командах и командах обнаружения, определить полную топологию сети и задокументировать ее.

Часть 1: Проверка связи

Для схождения сети в Packet Tracer может потребоваться немного времени. Отправьте эхо-запросы между компьютерами и на сервер www.cisco.com, чтобы проверить схождение и протестировать сеть. Все компьютеры должны успешно отправлять эхо-запросы друг другу и на сервер. Помните, что для успешного результата может потребоваться повторная отправка эхо-запросов.

Часть 2: Поиск сведений о настройках компьютера

Шаг 1: Откройте командную строку на ПК 1.

Выберите **ПК 1**, выберите вкладку **Desktop** (Рабочий стол), а затем выберите **Command Prompt** (Командная строка).

Шаг 2: Определите сведения об адресации для ПК 1.

Для определения текущей настройки адресации IP введите команду ipconfig /all.

Примечание. В Packet Tracer необходимо ввести пробел между ipconfig и /all.

Шаг 3: Внесите информацию для ПК 1 в таблицу адресации.

Шаг 4: Повторите шаги с 1 по 3 на ПК со 2 по 7.

Часть 3: Поиск сведений о настройке шлюза по умолчанию

Шаг 1: Проверьте связь между ПК 1 и его шлюзом по умолчанию.

Отправьте с компьютера ПК 1 эхо-запрос на шлюз по умолчанию, чтобы убедиться в наличии связи.

Шаг 2: Подключитесь к шлюзу по умолчанию с помощью Telnet.

Используйте команду **telnet** *ip-address*. IP-адрес в этой команде — это IP-адрес шлюза по умолчанию. В ответ на запрос пароля введите **cisco**.

Шаг 3: Просмотрите текущие настройки интерфейсов.

- a. Чтобы определить текущие настройки интерфейсов, используйте команды show ip interface brief и show protocols.
- b. Задокументируйте сведения о маске подсети, выводимые по команде show protocols.
- Шаг 4: Задокументируйте имя компьютера и настройку интерфейсов маршрутизатора, являющегося шлюзом для ПК 1 в таблице адресации.

Часть 4: Поиск сведений о маршрутах и соседних устройствах в сети

Шаг 1: На маршрутизаторе, являющемся шлюзом для компьютера ПК 1, отобразите таблицу маршрутизации.

- a. Отобразите таблицу маршрутизации, используя команду **show ip route**. Вы должны увидеть пять подключённых маршрутов и шесть маршрутов, полученных с помощью EIGRIP, один из которых является маршрутом по умолчанию.
- b. Помимо маршрутов, запишите любые другие полезные сведения, содержащиеся в таблице маршрутизации, чтобы упростить дальнейшее исследование сети и ее документирование.
- с. Определите, нет ли других IP-адресов, к которым можно обратиться через Telnet, чтобы продолжить исследование сети.

Шаг 2: Найдите напрямую подключённые устройства Cisco.

На маршрутизаторе, являющемся шлюзом для компьютера ПК 1, используйте команду **show cdp neighbors detail**, чтобы обнаружить остальные напрямую подключённые устройства Cisco.

Шаг 3: Задокументируйте сведения о соседних устройствах и проверьте возможность установления связи.

Команда **show cdp neighbors detail** выводит сведения об одном соседнем устройстве, включая его IPадрес. Задокументируйте имя узла и IP-адрес соседнего устройства, а затем отправьте эхо-запрос на IP-адрес для проверки связи. Первые два или три эхо-запроса заканчиваются неудачей, поскольку протокол ARP ещё не выполнил разрешение MAC-адреса.

Шаг 4: Попытайтесь подключиться к соседнему устройству с помощью Telnet и найдите напрямую подключённые устройства Cisco.

- a. Подключитесь к соседнему устройству с помощью Telnet и используйте команду **show cdp neighbors detail** для обнаружения других напрямую подключённых устройств Cisco.
- b. В этот раз вы должны увидеть три устройства. Для каждого подынтерфейса может быть указан маршрутизатор-шлюз компьютера ПК 1.

Примечание. Выполните на коммутаторах команду **show interfaces**, чтобы определить сведения о маске подсети.

Шаг 5: Задокументируйте имена узлов и IP-адреса соседних устройств, и проверьте связь.

Задокументируйте эти данные и отправьте эхо-запросы на обнаруженные новые соседние устройства. Следует помнить, что первые два или три эхо-запроса заканчиваются неудачей, поскольку протокол ARP ещё не выполнил разрешение MAC-адреса.

Шаг 6: Попытайтесь подключиться с помощью Telnet ко всем соседним устройствам и проверьте наличие дополнительных устройств Cisco.

Подключитесь с помощью Telnet к каждому из новых обнаруженных соседних устройств и используйте команду **show cdp neighbors detail** для поиска дополнительных устройств Cisco. Пароль для доступа — **cisco.**

Шаг 7: Продолжите процесс исследования и документирования сети.

Завершите сеансы Telnet, чтобы вернуться к маршрутизатору-шлюзу по умолчанию для ПК 1. С этого маршрутизатора подключитесь через Telnet к другим устройствам в сети, чтобы продолжить исследование и документирование сети. Не забудьте воспользоваться командами **show ip route** и **show cdp neighbors**, чтобы определить IP-адреса, которые можно использовать для подключения через Telnet.

Примечание. Выполните на коммутаторах команду **show interfaces**, чтобы определить сведения о маске подсети.

Шаг 8: При необходимости повторите шаги с 1 по 7 для исследования топологии всей сети.

Часть 5: Графическое представление топологии сети

Шаг 1: Нарисуйте топологию.

Теперь, когда обнаружены все сетевые устройства и задокументированы их адреса, используйте таблицу адресации, чтобы нарисовать схему топологии.

Совет. В середине сети находится облако Frame Relay.

Шаг 2: Сохраните эту задокументированную информацию.

- а. Покажите инструктору свою диаграмму топологии, а также таблицу адресации, для проверки.
- b. Созданные диаграмма топологии и таблица адресации понадобятся для выполнения второй части этого задания.

Предлагаемый способ подсчёта баллов

Раздел заданий	Расположение вопросов	Максимальное количество баллов	Количество заработанных баллов
Часть 5. Графическое представление топологии сети	Шаг 2-а	100	
	Итого по части 5	100	
Οцε	енка Packet Tracer	0	
Общее ко	оличество баллов	100	