Лабораторная работа. Настройка преобразования адреса и номера порта (РАТ)

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
Шлюз	G0/1	192.168.1.1	255.255.255.0	Недоступно
	S0/0/1	209.165.201.18	255.255.255.252	Недоступно
ISP	S0/0/0 (DCE)	209.165.201.17	255.255.255.252	Недоступно
	Lo0	192.31.7.1	255.255.255.255	Недоступно
PC-A	NIC	192.168.1.20	255.255.255.0	192.168.1.1
PC-B	NIC	192.168.1.21	255.255.255.0	192.168.1.1
PC-C	NIC	192.168.1.22	255.255.255.0	192.168.1.1

Задачи

Часть 1. Построение сети и проверка соединения

- Часть 2. Настройка и проверка пула NAT с перегрузкой
- Часть 3. Настройка и проверка РАТ

Исходные данные/сценарий

По сценарию первой части лабораторной работы интернет-провайдер выделил вашей компании диапазон публичных IP-адресов 209.165.200.224/29. Благодаря этому компания получила шесть публичных IP-адресов. Перегрузка пула динамического NAT использует пул IP-адресов по модели

«множество к множеству». Маршрутизатор использует первый IP-адрес в пуле и назначает подключения с помощью IP-адреса и уникального номера порта. После достижения на маршрутизаторе максимального количества преобразований для одного IP-адреса (завист от платформы и оборудования), используется следующий IP-адрес в пуле. Перегрузка пула NAT представляет собой вид преобразования адреса и номера порта (PAT), которое перегружает группу публичных IPv4-адресов.

Во второй части интернет-провайдер выделил вашей компании один IP-адрес, 209.165.201.18, для подключения маршрутизатора Gateway, являющегося шлюзом, к сети интернет-провайдера. Для преобразования нескольких внутренних адресов в один пригодный для использования публичный адрес используйте преобразование адресов портов (PAT). Вы выполните тестирование, отображение и проверку осуществления всех преобразований и проанализируете статистику NAT/PAT для контроля процесса.

Примечание. В практических лабораторных работах CCNA используются маршрутизаторы с интеграцией сервисов Cisco 1941 (ISR) под управлением OC Cisco IOS версии 15.2(4) M3 (образ universalk9). В лабораторной работе используются коммутаторы Cisco Catalyst серии 2960 под управлением OC Cisco IOS 15.0(2) (образ lanbasek9). Допускается использование коммутаторов и маршрутизаторов других моделей, а также других версий OC Cisco IOS. В зависимости от модели устройства и версии Cisco IOS доступные команды и выходные данные могут отличаться от данных, полученных при выполнении лабораторных работ. Точные идентификаторы интерфейсов указаны в сводной таблице интерфейсов маршрутизаторов в конце лабораторной работы.

Примечание. Убедитесь, что предыдущие настройки маршрутизаторов и коммутаторов удалены, и они не содержат файлов загрузочной настройки. Если вы не уверены в этом, обратитесь к инструктору.

Необходимые ресурсы:

- 2 маршрутизатора (Cisco 1941 под управлением ОС Cisco IOS 15.2(4) МЗ (образ universal) или аналогичная модель);
- 1 коммутатор (Cisco 2960, с программным обеспечением Cisco IOS версии 15.0(2), образ lanbasek9 или аналогичный);
- 3 компьютера (под управлением Windows 7, Vista или XP с программой эмуляции терминала, например Tera Term);
- консольные кабели для настройки устройств Cisco IOS через порты консоли;
- кабели Ethernet и последовательные кабели в соответствии с топологией.

Часть 1: Построение сети и проверка связи

В первой части вам предстоит настроить топологию сети и выполнить базовую настройку, например, IP-адреса интерфейсов, статическую маршрутизацию, доступ к устройствам и пароли.

Шаг 1: Подключите кабели в сети в соответствии с топологией.

Шаг 2: Настройте узлы.

Шаг 3: Выполните инициализацию и перезагрузку маршрутизаторов и коммутаторов.

Шаг 4: Произведите базовую настройку маршрутизаторов.

- а. Отключите поиск DNS.
- b. Настройте IP-адреса для маршрутизаторов, указанных в таблице адресации.

- с. Установите тактовую частоту на **128000** для всех последовательных интерфейсов DCE.
- d. Настройте имя устройств в соответствии с топологией.
- е. Назначьте cisco в качестве паролей консоли и VTY.
- f. Назначьте class в качестве зашифрованного пароля доступа к привилегированному режиму.
- g. Настройте logging synchronous, чтобы консольные сообщения не могли прерывать ввод команд.

Шаг 5: Настройте статическую маршрутизацию.

- a. Создайте статический маршрут от маршрутизатора ISP к маршрутизатору Gateway. ISP(config) # ip route 209.165.200.224 255.255.255.248 209.165.201.18
- b. Создайте маршрут по умолчанию от маршрутизатора Gateway к маршрутизатору ISP.

Gateway(config) # ip route 0.0.0.0 0.0.0.0 209.165.201.17

Шаг 6: Проверьте связь по сети.

- а. С компьютеров отправьте эхо-запросы на интерфейс G0/1 маршрутизатора Gateway. Выполните отладку, если эхо-запрос не проходит.
- b. Проверьте настройку статических маршрутов на обоих маршрутизаторах.

Часть 2: Настройка и проверка пула NAT с перегрузкой

Во второй части вам предстоит настроить Маршрутизатор Gateway, для преобразования IP-адреса из сети 192.168.1.0/24 в один из шести пригодных к использованию адресов в диапазоне 209.165.200.224/29.

Шаг 1: Создайте ACL, соответствующий диапазону частных IP-адресов локальной сети.

АСL-список 1 используется для разрешения преобразования сети 192.168.1.0/24.

Gateway(config) # access-list 1 permit 192.168.1.0 0.0.0.255

Шаг 2: Определите пул пригодных к использованию публичных IP-адресов.

```
Gateway(config) # ip nat pool public_access 209.165.200.225 209.165.200.230 netmask 255.255.248
```

Шаг 3: Определите NAT из внутреннего списка адресов источника на пул внешних адресов.

Gateway(config) # ip nat inside source list 1 pool public_access overload

Шаг 4: Укажите интерфейсы.

Выполните на интерфейсах команды ip nat inside и ip nat outside.

```
Gateway(config) # interface g0/1
Gateway(config-if) # ip nat inside
Gateway(config-if) # interface s0/0/1
Gateway(config-if) # ip nat outside
```

Шаг 5: Проверьте настройку пула NAT с перегрузкой.

а. От каждого ПК отправьте эхо-запрос на адрес маршрутизатора интернет-провайдера — 192.31.7.1.

b. Просмотрите статистику NAT для маршрутизатора Gateway.

```
Gateway# show ip nat statistics
Total active translations: 3 (0 static, 3 dynamic; 3 extended)
Peak translations: 3, occurred 00:00:25 ago
Outside interfaces:
 Serial0/0/1
Inside interfaces:
 GigabitEthernet0/1
Hits: 24 Misses: 0
CEF Translated packets: 24, CEF Punted packets: 0
Expired translations: 0
Dynamic mappings:
-- Inside Source
[Id: 1] access-list 1 pool public access refcount 3
pool public access: netmask 255.255.255.248
        start 209.165.200.225 end 209.165.200.230
        type generic, total addresses 6, allocated 1 (16%), misses 0
Total doors: 0
```

```
Appl doors: 0
Normal doors: 0
Queued Packets: 0
```

с. Отобразите преобразования NAT на маршрутизаторе Gateway.

Gateway# show ip nat translations

Pro 1	Inside global	Inside local	Outside local	Outside global
icmp	209.165.200.225:0	192.168.1.20:1	192.31.7.1:1	192.31.7.1:0
icmp	209.165.200.225:1	192.168.1.21:1	192.31.7.1:1	192.31.7.1:1
icmp	209.165.200.225:2	192.168.1.22:1	192.31.7.1:1	192.31.7.1:2

Примечание. В зависимости от времени, истекшего с момента отправки эхо-запросов с каждого ПК, вы можете не увидеть все три преобразования. Для преобразований ICMP характерны низкие значения времени ожидания.

Сколько внутренних локальных ІР-адресов указано в примере выходных данных выше?

Сколько указано внутренних глобальных ІР-адресов? ____

Сколько номеров портов используется в паре со внутренними глобальными адресами? _

Что произойдёт в результате отправки эхо-запроса на внутренний локальный адрес компьютера ПК А с маршрутизатора интернет-провайдера? Почему?

Часть 3: Настройка и проверка преобразования РАТ

В третьей части вам предстоит настроить РАТ, используя для определения внешних адресов интерфейс вместо пула адресов. Не все команды из части 2 будут использоваться в части 3.

Шаг 1: Очистите преобразования NAT и статистику на маршрутизаторе Gateway.

Шаг 2: Проверьте настройку NAT.

- а. Убедитесь, что статистика стёрта.
- b. Убедитесь, что внешние и внутренние интерфейсы настроены для преобразований NAT.
- с. Убедитесь, что ACL-список по-прежнему настроен для преобразований NAT.

Какую команду вы использовали для того, чтобы подтвердить результаты после выполнения шагов от а до с?

Шаг 3: Удалите пул пригодных к использованию публичных IP-адресов.

Gateway(config) # no ip nat pool public_access 209.165.200.225 209.165.200.230 netmask 255.255.255.248

Шаг 4: Удалите преобразование NAT с ACL в пул внешних адресов.

Gateway(config) # no ip nat inside source list 1 pool public_access overload

Шаг 5: Сопоставьте список источников с внешним интерфейсом.

Gateway(config) # ip nat inside source list 1 interface serial 0/0/1 overload

Шаг 6: Проверьте настройку РАТ.

- а. От каждого ПК отправьте эхо-запрос на адрес маршрутизатора интернет-провайдера 192.31.7.1.
- b. Просмотрите статистику NAT для маршрутизатора Gateway.

```
Gateway# show ip nat statistics
Total active translations: 3 (0 static, 3 dynamic; 3 extended)
Peak translations: 3, occurred 00:00:19 ago
Outside interfaces:
   Serial0/0/1
Inside interfaces:
   GigabitEthernet0/1
Hits: 24 Misses: 0
CEF Translated packets: 24, CEF Punted packets: 0
Expired translations: 0
Dynamic mappings:
-- Inside Source
[Id: 2] access-list 1 interface Serial0/0/1 refcount 3
Total doors: 0
Appl doors: 0
```

Normal doors: 0 Queued Packets: 0

с. Отобразите преобразования NAT на маршрутизаторе Gateway.

Gateway# show ip nat	translations		
Pro Inside global	Inside local	Outside local	Outside global
icmp 209.165.201.18:3	192.168.1.20:1	192.31.7.1:1	192.31.7.1:3

© Корпорация Cisco и/или её дочерние компании, 2014. Все права защищены. В данном документе содержится общедоступная информация корпорации Cisco.

icmp	209.165.201.18:1	192.168.1.21:1	192.31.7.1:1	192.31.7.1:1
icmp	209.165.201.18:4	192.168.1.22:1	192.31.7.1:1	192.31.7.1:4

Вопросы на закрепление

В чём заключаются преимущества РАТ?

Сводная таблица интерфейсов маршрутизаторов

Сводная информация об интерфейсах маршрутизаторов				
Модель маршрутизатора	Интерфейс Ethernet № 1	Интерфейс Ethernet № 2	Последовательный интерфейс № 1	Последовательный интерфейс № 2
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)

Примечание. Чтобы узнать, каким образом настроен маршрутизатор, изучите интерфейсы с целью определения типа маршрутизатора и количества имеющихся на нём интерфейсов. Эффективного способа перечисления всех сочетаний настроек для каждого класса маршрутизаторов не существует. В данной таблице содержатся идентификаторы возможных сочетаний Ethernet и последовательных (Serial) интерфейсов в устройстве. В таблицу не включены какие-либо иные типы интерфейсов, даже если на определённом маршрутизаторе они присутствуют. В качестве примера можно привести интерфейс ISDN BRI. Строка в скобках — это принятое сокращение, которое можно использовать в командах Cisco IOS для представления интерфейса.