Packet Tracer: организация подсети по сценарию 1

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
	G0/0			
R1	G0/1			
	S0/0/0			
	G0/0			
R2	G0/1			
	S0/0/0			
S1	VLAN 1			
S2	VLAN 1			
S3	VLAN 1			
S4	VLAN 1			
ПК1	Сетевой адаптер			
ПК2	Сетевой адаптер			
ПКЗ	Сетевой адаптер			
ПК4	Сетевой адаптер			

Задачи

Часть 1. Разработка схемы ІР-адресации

Часть 2. Назначение сетевым устройствам ІР-адресов и проверка подключения

Сценарий

В этом упражнении вам предоставляется сетевой адрес 192.168.100.0/24 для подсети, и вы должны составить схему IP-адресации сети, изображённой в топологии. Для каждой локальной сети в сети требуется достаточно пространства для, по крайней мере, 25 адресов для конечных устройств, коммутатора и маршрутизатора. Для соединения между маршрутизаторами R1 и R2 потребуется по одному IP-адресу на каждом конце канала.

Часть 1: Разработка схемы IP-адресации

Шаг 1: Разбиение сети 192.168.100.0/24 на нужное количество подсетей.

a.	В соответствии с имеющейся топологией сколько потребуется подсетей?					
b.	Сколько необходимо заимствовать битов для поддержки нескольких подсетей в таблице топологии?					
c.	 Сколько в результате этого создаётся подсетей?					
d.	Сколько при этом в каждой подсети будет доступно пригодных к использованию узлов?					
	Примечание. Если ваш ответ — менее 25 узлов, значит, вы позаимствовали слишком много бит.					
e.	Рассчитайте двоичное значение для первых пяти подсетей. Первая подсеть уже показана.					
	Net 0: 192 . 168 . 100 . 0 0 0 0 0 0 0 0 0 0					
	Net 1: 192 . 168 . 100					
	Net 2: 192 . 168 . 100					
	Net 3: 192 . 168 . 100					
	Net 4: 192 . 168 . 100					
f.	Рассчитайте двоичное и десятичное значение новой маски подсети.					

- 255 . 255 . 255 . ____
- g. Заполните таблицу подсетей, перечислив десятичные значения всех доступных подсетей, первый и последний используемый адрес узла и широковещательный адрес. Повторяйте действие до отображения всех адресов.

Примечание. Возможно, потребуется использовать не все строки.

Таблица подсети

Номер подсети	Адрес подсети	Первый используемый адрес узла	Последний используемый адрес узла	Широковещательный адрес
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

Шаг 2: Назначьте подсети для сети, отображаемой в топологии.

- a. Назначьте подсеть 0 локальной сети, подключённой к интерфейсу GigabitEthernet 0/0 маршрутизатора R1: _____
- b. Назначьте подсеть 1 локальной сети, подключённой к интерфейсу GigabitEthernet 0/1 маршрутизатора R1: _____
- с. Назначьте подсеть 2 локальной сети, подключённой к интерфейсу GigabitEthernet 0/0 маршрутизатора R2: _____
- d. Назначьте подсеть 3 локальной сети, подключённой к интерфейсу GigabitEthernet 0/1 маршрутизатора R2: _____
- е. Назначьте подсеть 4 каналу WAN между маршрутизаторами R1 и R2: ______

Шаг 3: Задокументируйте схему адресации.

Заполните таблицу адресации, используя следующие рекомендации.

- а. Назначьте первые используемые IP-адреса маршрутизатору R1 для двух каналов локальной сети и одного канала сети WAN.
- b. Назначьте первые используемые IP-адреса маршрутизатору R2 для каналов локальной сети. Последний из используемых IP-адресов назначьте каналу WAN.
- с. Второй из используемых ІР-адресов назначьте коммутаторам.
- d. Последний из используемых IP-адресов назначьте узлам.

Часть 2: Назначение сетевым устройствам IP-адресов и проверка подключения

Основная часть IP-адресации на данной сети уже настроена. Выполните следующие шаги для завершения настройки адресации.

- Шаг 1: Настройка IP-адресации на интерфейсах локальной сети маршрутизатора R1.
- Шаг 2: Настройте IP-адресацию на S3, включая шлюз по умолчанию.
- Шаг 3: Настройте IP-адресацию на ПК4, включая шлюз по умолчанию.

Шаг 4: Проверка подключения.

Связь можно проверить только между маршрутизатором R1, коммутатором S3 и компьютером ПК4. При этом необходимо отправлять команду ping каждому IP-адресу, перечисленному в **таблице** адресации.

Предлагаемый способ подсчёта баллов

Раздел заданий	Расположение вопросов	Возможные баллы	Полученные баллы
Часть 1. Разработка	Шаг 1а	1	
схемы IP-адресации	Шаг 1b	1	
	Шаг 1с	1	
	Шаг 1d	1	
	Шаг 1е	4	
	Шаг 1f	2	
Заполнение таблицы подсети	Шаг 1д	10	
Назначение подсетей	Шаг 2	10	
Документация	Шаг З	40	
	70		
Оценка Packet Tracer		30	
Общее количество баллов		100	