Packet Tracer: отправка эхо-запросов и выполнение трассировки для проверки пути

Топология

Таблица адресации

Verneŭerne	Интерфейс	IPv4-адрес	Маска подсети	Шлюз по
устроиство		Адрес IРv6/префикс		умолчанию
R1	G0/0	2001:DB8:1:1::1/64		Недоступно
	G0/1	10.10.1.97	255.255.255.224	Недоступно
	S0/0/1	10.10.1.6	255.255.255.252	Недоступно
		2001:DB8:1:2::2/64		Недоступно
	Локальный адрес канала	FE80::1		Недоступно
R2	S0/0/0	10.10.1.5	255.255.255.252	Недоступно
		2001:DB8:1:2::1/64		Недоступно
	S0/0/1	10.10.1.9	255.255.255.252	Недоступно
		2001:DB8:1:3::1/64		Недоступно
	Локальный адрес канала	FE80::2		Недоступно
R3	G0/0	2001:DB8:1:4::1/64		Недоступно
	G0/1	10.10.1.17	255.255.255.240	Недоступно
	S0/0/1	10.10.1.10	255.255.255.252	Недоступно
		2001:DB8:1:3::2/64		Недоступно
	Локальный адрес канала	FE80::3		Недоступно
ПК1	Сетевой адаптер			
ПК2	Сетевой адаптер			
ПКЗ	Сетевой адаптер			
ПК4	Сетевой адаптер			

Задачи

Часть 1. Тестирование и восстановление подключения IPv4

Часть 2. Тестирование и восстановление подключения IPv6

Сценарий

В этом упражнении имеются проблемы подключения. Помимо сбора и документирования информации о сети, необходимо определить проблемы и использовать приемлемые решения для восстановления соединения.

Примечание. Пароль для пользовательского режима — **cisco**. Пароль привилегированного режима — **class**.

Часть 1: Тестирование и восстановление подключения IPv4

Шаг 1: Использование команд ipconfig и ping для проверки подключения.

- а. Щёлкните ПК1, откройте вкладку Desktop (рабочий стол) и выберите Command Prompt (командная строка).
- b. Введите команду **ipconfig /all** для сбора данных об IPv4-адресе. Заполните **таблицу адресации**, указав IPv4-адрес, маску подсети и шлюз по умолчанию.
- с. Щёлкните ПКЗ, откройте вкладку Desktop (рабочий стол) и выберите Command Prompt (командная строка).
- d. Введите команду **ipconfig** /all для сбора данных об IPv4-адресе. Заполните **таблицу адресации**, указав IPv4-адрес, маску подсети и шлюз по умолчанию.
- e. Проверьте связь и между ПК1 и ПК3. Команда ping не должна быть успешно выполнена.

Шаг 2: Найдите причину сбоя подключения.

- а. На узле **ПК1** введите команду для трассировки маршрута к **ПК3**. Какой последний IPv4-адрес ответил успешно?
- b. Трассировка в конечном итоге завершится после выполнения 30 попыток. Нажмите клавиши **CTRL+C**, чтобы остановить трассировку преждевременно.
- с. На узле **ПК3** введите команду для трассировки маршрута к **ПК1**. Какой последний IPv4-адрес ответил успешно?
- d. Нажмите клавиши CTRL+C, чтобы остановить трассировку.
- е. Щёлкните **R1** и откройте вкладку **CLI**. Нажмите клавишу **BBOД** и войдите в систему маршрутизатора.
- f. Введите команду **show ip interface brief**, чтобы вывести список интерфейсов и их текущее состояние. На маршрутизаторе есть два адреса IPv4. Один должен быть записан в шаге 2а. Каков другой адрес?
- g. Выполните команду show ip route, чтобы вывести список сетей, к которым подключён маршрутизатор. Обратите внимание, что к интерфейсу Serial0/0/1 подключены две сети. Какие это сети?

h. Повторите шаги с 2е по 2g на **R3** и дайте здесь ответ.

Обратите внимание, что последовательный интерфейс на маршрутизаторе R3 изменился.

i. Выполните дополнительные проверки, если это позволит выявить проблему. Доступен режим моделирования.

Шаг 3: Предложите решение этой проблемы.

- а. Сопоставьте свои ответы в шаге 2 с имеющейся документацией сети. В чём заключается ошибка?
- b. Какое решение может быть предложено для устранения этой проблемы?

Шаг 4: Реализуйте намеченный план.

Примените решение, предложенное в шаге 3b.

Шаг 5: Убедитесь, что подключение восстанавливается.

- а. На ПК1 проверьте подключение к ПК3.
- b. На ПКЗ проверьте подключение к ПК1. Удалось ли устранить проблему? _____

Шаг 6: Документирование решения.

Часть 2: Тестирование и восстановление подключения IPv6

Шаг 1: Использование команд ipv6config и ping для проверки подключения.

- а. Щёлкните ПК2, откройте вкладку Desktop и выберите Command Prompt.
- b. Введите команду **ipv6config** /all для сбора данных об IPv6-адресе. Заполните **таблицу адресации**, указав IPv6-адрес, префикс подсети и шлюз по умолчанию.
- с. Щёлкните ПК4, откройте вкладку Desktop и выберите Command Prompt.
- d. Введите команду **ipv6config** /all для сбора данных об IPv6-адресе. Заполните **таблицу адресации**, указав IPv6-адрес, префикс подсети и шлюз по умолчанию.
- е. Проверьте связь и между ПК2 и ПК4. Команда ping не должна быть успешно выполнена.

Шаг 2: Найдите причину сбоя подключения.

- а. На узле **ПК2** введите команду для трассировки маршрута к **ПК4**. Какой последний IPv6-адрес ответил успешно?
- b. Трассировка в конечном итоге завершится после выполнения 30 попыток. Нажмите клавиши **CTRL+C**, чтобы остановить трассировку преждевременно.
- с. На узле **ПК4** введите команду для трассировки маршрута к **ПК2**. Какой последний IPv6-адрес ответил успешно?

[©] Корпорация Cisco и/или её дочерние компании, 2014. Все права защищены. В данном документе содержится общедоступная информация корпорации Cisco.

- d. Нажмите клавиши CTRL+C, чтобы остановить трассировку.
- е. Щёлкните **R3** и откройте вкладку **CLI**. Нажмите клавишу **BBOД** и войдите в систему маршрутизатора.
- f. Введите команду **show ipv6 interface brief**, чтобы вывести список интерфейсов и их текущее состояние. На маршрутизаторе есть два адреса IPv6. Один должен совпадать с адресом шлюза, записанного в шаге 1d. Есть несоответствие?
- g. Выполните дополнительные проверки, если это позволит выявить проблему. Доступен режим моделирования.

Шаг 3: Предложите решение этой проблемы.

- а. Сопоставьте свои ответы в шаге 2 с имеющейся документацией сети. В чём заключается ошибка?
- b. Какое решение может быть предложено для устранения этой проблемы?

Шаг 4: Реализуйте намеченный план.

Примените решение, предложенное в шаге 3b.

Шаг 5: Убедитесь, что подключение восстанавливается.

- а. На ПК2 проверьте подключение к ПК4.
- b. На ПК4 проверьте подключение к ПК2. Удалось ли устранить проблему? _____

Шаг 6: Документирование решения.

Предлагаемый способ подсчёта баллов

Раздел заданий	Расположение вопросов	Возможные баллы	Полученные баллы
Часть 1. Тестирование	Шаг 1b	5	
и восстановление подключения между ПК1	Шаг 1d	5	
и ПКЗ	Шаг 2а	5	
	Шаг 2с	5	
	Шаг 2f	5	
	Шаг 2д	5	
	Шаг 2h	5	
	Шаг За	5	
	Шаг Зb	5	
	45		
Часть 2. Тестирование	Шаг 1b	5	
подключения между ПК2	Шаг 1d	5	
и ПК4	Шаг 2а	5	
	Шаг 2с	5	
	Шаг 2f	5	
	Шаг За	5	
	Шаг Зb	5	
	35		
Оцен	20		
Общее кол	100		