Лабораторная работа: просмотр ARP с помощью интерфейса командной строки Windows, интерфейса командной строки IOS и Wireshark

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию		
R1	G0/1	192.168.1.1	255.255.255.0	Недоступно		
S1	VLAN 1	192.168.1.11	255.255.255.0	192.168.1.1		
S2	VLAN 1	192.168.1.12	255.255.255.0	192.168.1.1		
ПК-А	Сетевой адаптер	192.168.1.3	255.255.255.0	192.168.1.1		
ПК-Б	Сетевой адаптер	192.168.1.2	255.255.255.0	192.168.1.1		

Задачи

Часть 1. Создание и настройка сети

Часть 2. Использование команды ARP в OC Windows

Часть 3. Использование команды show arp в IOS

Часть 4. Анализ обмена сообщениями ARP с помощью программы Wireshark

Исходные данные/сценарий

Протокол разрешения адресов (ARP) используется протоколом TCP/IP для сопоставления IP-адреса уровня 3 с MAC-адресом уровня 2. Когда кадр помещается в сеть, он должен содержать MAC-адрес назначения. Для динамического определения MAC-адреса устройства назначения по локальной сети отправляется широковещательный запрос ARP. Устройство, которое содержит IP-адрес назначения, отвечает, и MAC-адрес записывается в ARP-кэш. Каждое устройство в локальной сети имеет собственный ARP-кэш или небольшой участок в ОЗУ, где хранятся результаты ARP. Таймер ARP-кэша удаляет ARP-записи, которые не использовались в течение определённого периода времени.

ARP — яркий пример компромисса производительности. При отсутствии кэша протокол ARP должен непрерывно запрашивать трансляцию адресов каждый раз при помещении кадра в сеть. В этом случае для установления связи прибавляется время ожидания, что может вызвать перегрузку локальной сети. И наоборот, неограниченное время ожидания может привести к ошибкам устройств, которые покидают сеть или меняют адрес уровня 3.

Администратор сети должен знать о протоколе ARP, даже если не может с ним взаимодействовать на регулярной основе. ARP — это протокол, который позволяет сетевым устройствам обмениваться данными с протоколом TCP/IP. Без него невозможно эффективно построить датаграмму для адреса назначения уровня 2. Кроме того, ARP может создавать риски для безопасности. Хакеры используют ARP-спуфинг, или «отравление» ARP-кэша, для внедрения в сети неверных MAC-адресов. Злоумышленник генерирует ложный MAC-адрес устройства, в результате чего кадры передаются на неверный адрес назначения. Ручная конфигурация статических связей ARP — это один из способов предотвращения атак на основе протокола ARP. И, наконец, для предотвращения несанкционированного доступа к сети на устройствах Cisco можно настроить список авторизированных MAC-адресов.

В данной лабораторной работе вам предстоит открыть таблицу ARP с помощью команд ARP в маршрутизаторах Windows и Cisco. Кроме того, вы очистите ARP-кэш и добавите статические записи ARP.

Примечание. Маршрутизаторы, используемые на практических занятиях ССNA: маршрутизаторы с интеграцией сервисов серии Cisco 1941 (ISR) установленной версии Cisco IOS 15.2(4) M3 (образ universalk9). Используемые коммутаторы: семейство коммутаторов Cisco Catalyst 2960 версии CISCO IOS 15.0(2) (образ lanbasek9). Можно использовать другие маршрутизаторы, коммутаторы и версии CISCO IOS. В зависимости от модели и версии Cisco IOS выполняемые доступные команды и выводы могут отличаться от данных, полученных в ходе лабораторных работ. Точные идентификаторы интерфейса см. в таблице сводной информации об интерфейсах маршрутизаторов в конце данной лабораторной работы.

Примечание. Убедитесь, что информация, имеющаяся на маршрутизаторе и коммутаторе, удалена и они не содержат файлов загрузочной конфигурации. Если вы не уверены, что сможете это сделать, обратитесь к инструктору.

Необходимые ресурсы

- 1 маршрутизатор (Cisco 1941 с универсальным образом МЗ версии CISCO IOS 15.2(4) или аналогичным)
- 2 коммутатора (Cisco 2960, ПО CISCO IOS версии 15.0(2), образ lanbasek9 или аналогичный)
- Два ПК (Windows 7, Vista или XP с установленным эмулятором терминала, например Tera Term, и программой Wireshark)
- Консольные кабели для настройки устройств CISCO IOS через консольные порты
- Кабели Ethernet в соответствии с топологией

Примечание. Интерфейсы Fast Ethernet на коммутаторах Cisco 2960 определяют тип подключения автоматически, поэтому между коммутаторами S1 и S2 можно использовать прямой кабель Ethernet. При использовании коммутатора Cisco другой модели может потребоваться кроссовый кабель Ethernet.

Часть 1: Создание и настройка сети

- Шаг 1: Подключите сеть в соответствии с топологией.
- Шаг 2: Настройте IP-адреса устройств в соответствии с таблицей адресации.
- Шаг 3: Проверьте подключение к сети, отправив с ПК-Б эхо-запросы с помощью команды ping на все устройства.

Часть 2: Использование команды ARP в OC Windows

Команда **arp** позволяет пользователю просматривать и изменять ARP-кэш в OC Windows. Команда вводится в командную строку Windows.

Шаг 1: Отобразите ARP-кэш.

а. Откройте окно командной строки на ПК-А и введите arp.

C:\Users\User1> **arp**

```
Displays and modifies the IP-to-Physical address translation tables used by address resolution protocol (ARP).
```

```
ARP -s inet_addr eth_addr [if_addr]
ARP -d inet_addr [if_addr]
ARP -a [inet addr] [-N if addr] [-v]
```

-a	Displays current ARP entries by interrogating the current
	protocol data. If inet_addr is specified, the IP and Physical
	addresses for only the specified computer are displayed. If
	more than one network interface uses ARP, entries for each ARP
	table are displayed.
-g	Same as -a.
-v	Displays current ARP entries in verbose mode. All invalid
	entries and entries on the loop-back interface will be shown.
inet_addr	Specifies an internet address.
-N if_addr	Displays the ARP entries for the network interface specified
	by if_addr.
-d	Deletes the host specified by inet_addr. inet_addr may be
	wildcarded with * to delete all hosts.
-s	Adds the host and associates the Internet address inet_addr
	with the Physical address eth_addr. The Physical address is
	given as 6 hexadecimal bytes separated by hyphens. The entry
	is permanent.
eth_addr	Specifies a physical address.
if_addr	If present, this specifies the Internet address of the
	interface whose address translation table should be modified.
	If not present, the first applicable interface will be used.
Example:	
> arp -s 157.5	55.85.212 00-aa-00-62-c6-09 Adds a static entry.

с. Введите arp —a, чтобы отобразить таблицу ARP.

```
C:\Users\User1> arp -a
```

```
Interface: 192.168.1.3 --- 0xb
 Internet Address Physical Address
                                        Type
 192.168.1.1
                    d4-8c-b5-ce-a0-c1
                                       dynamic
 192.168.1.255
                    ff-ff-ff-ff-ff
                                       static
 224.0.0.22
                    01-00-5e-00-00-16
                                       static
 224.0.0.252
                    01-00-5e-00-00-fc
                                       static
 239.255.255.250
                    01-00-5e-7f-ff-fa
                                        static
```

Примечание. В ОС Windows XP таблица ARP будет пустой (как показано ниже).

C:\Documents and Settings\User1> **arp** -**a** No ARP Entries Found.

d. Отправьте эхо-запрос с помощью команды ping с ПК-А на ПК-Б для динамического добавления записей в ARP-кэш.

C:\Documents and Settings\User1> ping 192.168.1.2

Interface: 192.168.1.3 --- 0xb Internet Address Physical Address Type 192.168.1.2 00-50-56-be-f6-db dynamic

Назовите физический адрес узла с IP-адресом 192.168.1.2.

Шаг 2: Настройте записи в ARP-кэш вручную.

C:\Users\User1> arp -a

Чтобы удалить записи из ARP-кэша, выполните команду **arp –d {inet- addr | *}**. Можно удалить адреса по отдельности, указав соответствующие IP-адреса, либо стереть сразу все записи с помощью подстановочного символа *.

Убедитесь в том, что ARP-кэш содержит следующие записи: шлюз по умолчанию R1 G0/1 (192.168.1.1), ПК-Б (192.168.1.2) и оба коммутатора (192.168.1.11 и 192.168.1.12).

- а. С ПК-А отправьте эхо-запросы с помощью команды ping на все адреса в таблице адресов.
- b. Убедитесь в том, что все адреса добавлены в ARP-кэш. Если адрес в ARP-кэше отсутствует, отправьте эхо-запрос с помощью команды ping на адрес назначения и проверьте, добавлен ли адрес в ARP-кэш.

Interface: 192.168.1.3 --- 0xb Internet Address Physical Address Type 192.168.1.1 d4-8c-b5-ce-a0-c1 dynamic

192.168.1.2	00-50-56-be-f6-db	dynamic
192.168.1.11	0c-d9-96-e8-8a-40	<mark>dynamic</mark>
192.168.1.12	0c-d9-96-d2-40-40	dynamic
192.168.1.255	ff-ff-ff-ff-ff	static
224.0.0.22	01-00-5e-00-00-16	static
224.0.0.252	01-00-5e-00-00-fc	static
239.255.255.250	01-00-5e-7f-ff-fa	static

с. Откройте командную строку от имени администратора. Нажмите кнопку Пуск и в поле Найти программы и файлы введите команду cmd. Когда появится значок cmd, нажмите на него правой кнопкой мыши и выберите параметр Запуск от имени администратора. Нажмите кнопку Да, чтобы разрешить этой программе вносить изменения.

Примечание. Пользователям Windows XP для изменения записей в ARP-кэше права администратора не требуются.

		Открыть
	0	Запуск от имени администратора
		Закрепить на панели задач 😡
		Закрепить в меню "Пуск"
		Восстановить прежнюю версию
		Отправить
		Вырезать
		Копировать
		Удалить
		Расположение файла
		Свойства
Ознакомит	ъся с	другими результатами
		2

d. В окне командной строки администратора введите arp –d *. Эта команда удалит все записи из ARP-кэша. Убедитесь в том, что все записи из ARP-кэша удалены. Для этого в командной строке введите arp –a.

C:\windows\system32> **arp -d *** C:\windows\system32> **arp -a** No ARP Entries Found.

е. Подождите несколько минут. Протокол обнаружения соседей снова начинает заполнять ARP-кэш.

C:\Users\User1> **arp** -a

Interface: 192.168.1.3 --- 0xb

Internet Address	Physical Address	Туре
192.168.1.255	ff-ff-ff-ff-ff	static

Примечание. В Windows XP протокол обнаружения соседей не работает.

f. С ПК-А отправьте эхо-запрос с помощью команды ping на ПК-Б (192.168.1.2) и коммутаторы (192.168.1.11 и 192.168.1.12), чтобы добавить записи ARP. Убедитесь в том, что все записи ARP добавлены в ARP-кэш.

C:\Users\User1> **arp -a**

Interface: 192.168.1.3	0xb	
Internet Address	Physical Address	Туре
192.168.1.2	00-50-56-be-f6-db	dynamic
192.168.1.11	0c-d9-96-e8-8a-40	dynamic
192.168.1.12	0c-d9-96-d2-40-40	dynamic
192.168.1.255	ff-ff-ff-ff-ff	static

- g. Запишите физический адрес коммутатора S2.
- h. Чтобы удалить отдельную запись ADR, введите команду **arp- d** *inet-addr*. Чтобы удалить запись ARP для коммутатора S2, в командной строке введите **arp -d 192.168.1.12**.

C:\windows\system32> arp -d 192.168.1.12

i. Чтобы проверить, удалена ли запись ARP для коммутатора S2 из ARP-кэша, введите arp -a.

C:\Users\User1> arp -a

```
Interface: 192.168.1.3 --- 0xb
```

Internet Address	Physical Address	Туре
192.168.1.2	00-50-56-be-f6-db	dynamic
192.168.1.11	0c-d9-96-e8-8a-40	dynamic
192.168.1.255	ff-ff-ff-ff-ff	static

j. Для добавления отдельной записи ARP введите команду arp –s inet_addr mac_addr. В данном примере будут использоваться IP- и MAC-адреса для коммутатора S2. Используйте MAC-адрес, записанный в шаге g.

```
C:\windows\system32> arp -s 192.168.1.12 0c-d9-96-d2-40-40
```

k. Запись ARP для коммутатора S2 должна добавиться в кэш.

Часть 3: Использование команды show arp в IOS

В Cisco IOS ARP-кэш маршрутизаторов и коммутаторов можно также отображать с помощью команд **show arp** или **show ip arp**.

Шаг 1: Отобразите записи ARP на маршрутизаторе R1.

```
R1# show arpProtocolAddressAge (min)Hardware AddrTypeInterfaceInternet192.168.1.1-d48c.b5ce.a0c1ARPAGigabitEthernet0/1Internet192.168.1.200050.56be.f6dbARPAGigabitEthernet0/1Internet192.168.1.300050.56be.768cARPAGigabitEthernet0/1R1#
```

Обратите внимание на то, что первая запись интерфейса маршрутизатора G0/1 (шлюз по умолчанию для локальной сети) не имеет срока жизни. Срок жизни — это количество минут (мин), на протяжении которых запись содержалась в ARP-кэше. Для других записей это значение увеличивается. Протокол обнаружения соседей заполняет записи IP- и MAC-адресов на ПК-А и ПК-Б.

Шаг 2: Добавьте записи ARP на маршрутизатор R1.

Записи ARP можно добавлять в ARP-таблицу маршрутизатора, отправляя эхо-запросы с помощью команды ping на другие устройства.

а. Отправьте эхо-запрос с помощью команды ping с помощью команды ping на коммутатор S1.

```
R1# ping 192.168.1.11
```

```
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.1.11, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 1/2/4 ms
```

 Убедитесь в том, что запись ARP для коммутатора S1 добавлена в таблицу ARP маршрутизатора R1.

```
R1# show ip arp
Protocol Address
                                   Hardware Addr
                                                        Interface
                         Age (min)
                                                  Type
Internet 192.168.1.1
                               _
                                   d48c.b5ce.a0c1 ARPA
                                                        GigabitEthernet0/1
Internet 192.168.1.2
                                   0050.56be.f6db ARPA
                               6
                                                        GigabitEthernet0/1
Internet 192.168.1.3
                                   0050.56be.768c ARPA
                                                        GigabitEthernet0/1
                               6
Internet 192.168.1.11 0 0cd9.96e8.8a40 ARPA GigabitEthernet0/1
R1#
```

Шаг 3: Отобразите записи ARP на коммутаторе S1.

```
S1# show ip arp
Protocol Address
                         Age (min)
                                    Hardware Addr
                                                   Type
                                                          Interface
Internet 192.168.1.1
                               46
                                    d48c.b5ce.a0c1 ARPA Vlan1
Internet 192.168.1.2
                                8
                                    0050.56be.f6db ARPA
                                                          Vlan1
Internet 192.168.1.3
                                8
                                    0050.56be.768c ARPA Vlan1
Internet 192.168.1.11
                                    0cd9.96e8.8a40 ARPA
                                                          Vlan1
S1#
```

Шаг 4: Добавьте записи ARP на коммутаторе S1.

Записи ARP можно также добавлять в ARP-таблицу коммутатора, отправляя эхо-запросы с помощью команды ping на другие устройства.

а. С коммутатора S1 отправьте эхо-запрос с помощью команды ping на коммутатор S2.

```
S1# ping 192.168.1.12
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.1.12, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 1/2/8 ms
```

b. Убедитесь в том, что запись ARP для коммутатора S2 добавлена в таблицу ARP коммутатора S1.

S1# show ip arpProtocol AddressAge (min) Hardware AddrTypeInternet192.168.1.15d48c.b5ce.a0c1ARPAVlan1

 Internet
 192.168.1.2
 11
 0050.56be.f6db
 ARPA
 Vlan1

 Internet
 192.168.1.3
 11
 0050.56be.768c
 ARPA
 Vlan1

 Internet
 192.168.1.11
 0cd9.96e8.8a40
 ARPA
 Vlan1

 Internet
 192.168.1.12
 2
 0cd9.96d2.4040
 ARPA
 Vlan1

 S1#
 0cd9.96d2.4040
 ARPA
 Vlan1

Часть 4: Анализ обмена сообщениями ARP с помощью программы Wireshark

В части 4 вам предстоит изучить обмен сообщениями ARP, используя программу Wireshark для их захвата и оценки. Кроме того, вы проанализируете задержки сети, вызванные обменом сообщениями ARP между устройствами.

Шаг 1: Настройте программу Wireshark для захвата пакетов.

- а. Запустите программу Wireshark.
- b. Выберите сетевой интерфейс, который будете использовать для захвата сообщений ARP.

Шаг 2: Захватите и оцените сообщения ARP.

- a. Начните захват пакетов в программе Wireshark. С помощью фильтра отобразите только пакеты ARP.
- b. Очистите ARP-кэш, набрав в командной строке команду arp -d *.
- с. Убедитесь в том, что ARP-кэш очищен.
- d. Отправьте эхо-запрос с помощью команды ping на шлюз по умолчанию с помощью команды ping 192.168.1.1.
- e. После отправки эхо-запроса на шлюз по умолчанию остановите захват данных программой Wireshark.
- f. В захваченных данных найдите сообщения ARP в панели сведений о пакетах.

Какой пакет ARP был первым? _____

<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>Go</u> <u>C</u> apture <u>A</u> nalyze <u>S</u> tatistics Telephony <u>T</u> ools <u>I</u> nternals <u>H</u> elp	
◉ ◉ ∡ ■ ∞ ⊨ ≞ ೫ ₴ ९ 수 ⇔ ې 주 ⊻ ⊟ ⊟ Ө ९ ७ ऌ । ≝ ⊠ ‰ % Σ	3
Filter: arp Expression Clear Apply Save	
No. Time Source Destination Protocol Length Info	
6 1.795609000 Dell_19:55:92 Broadcast ARP 42 Who has 192.168.1.1? Tell	192.168.1.3
/1./960/5000 C15C0_45:/3:AL DEIL_19:55:92 ARP 60 192.168.1.1 15 AT C4:/1:TE	45:/3:al
< III	,
Frame 6: 42 bytes on wire (336 bits), 42 bytes cantured (336 bits) on interface 0	
Ethernet II, Src: Dell 19:55:92 (5c:26:0a:19:55:92), Dst: Broadcast (ff:ff:ff:ff:ff:ff)	
Address Resolution Protocol (request)	
Hardware type: Ethernet (1)	
Protocol type: IP (0x0800)	
Hardware size: 6	
Protocol size: 4	
opcode: request (1)	
Sender MAC address: Dell_19:55:92 (50:26:03:19:55:92)	
Sender TP address: 192.106.1.3 (192.106.1.3)	
Target TM address: 00.06_00.06_00.00.00.00.00.00.00	
0000 ff ff ff ff ff ff 5c 26 0a 19 55 92 08 06 00 01\&U	
0010 08 00 06 04 00 01 5c 26 0a 19 55 92 c0 a8 01 03\&U	

Заполните приведённую ниже таблицу данными первого захваченного пакета ARP.

Поле	Значение
МАС-адрес отправителя	
IP-адрес отправителя	
МАС-адрес назначения	
IP-адрес назначения	

Какой пакет ARP был вторым? _____

-

<u>F</u> ile <u>E</u>	<u>E</u> dit <u>V</u> iew	<u>G</u> o	<u>C</u> apture	<u>A</u> nalyze	<u>S</u> tatistic	s Telep	hony	<u>T</u> ools	Interna	ls <u>H</u> elp									
0 0) 🔟 🔳	Ø		X 2		⇒ 🛸	I) 🖓	_₽		; () ()	Q		**	¥.	2	} %	6 1	Ĵ.	
Filter:	arp								▼ Exp	ression	Cle	ear A	pply	Save					
No.	Time		Source		Desti	nation		Pro	otocol	Length	Info	o							
6	1.795609	000	Dell_1	L9:55:9	2 Bro	adcast		AF	۲P	42	2 Wh	ho ha	s 19	2.16	8.1.1	?	Tell	192.10	58.1.3
7	1.796075	000	Cisco_	_45:73:	al Del	1_19:5	5:92	AF	RP	60	0 19	92.16	8.1.	1 is	at c	4:7	1:fe:	45:73	a1 👘
•							111												•
<pre> Fra Eth Add H P H P O S S T T </pre>	ame 7: 60 mernet I dress Res dardware Protocol dardware Protocol opcode: n Sender M Sender I farget I farget I) byt , sr solut type size size eply C ac adc adc adc	es on c: Cis ion Pr : Ethe : IP (2: 6 (2) dress: dress: dress:	wire (co_45: otocol rnet () 0x0800 Cisco 192.16 Dell_ 192.16	480 bit: 73:a1 ((reply L)) _45:73: 8.1.1 (: 19:55:9 8.1.3 (:	s), 60 c4:71:) a1 (c4 L92.16 2 (5c: L92.16	byte: fe:45 8.1.1 26:0a 8.1.3	s cap :73:a e:45:) :19:5)	tured 1), D 73:a1 5:92)	(480 k st: De]	Dits	s) or 19:55	int :92	erfa (5c:	ce 0 26:0a	::19	9:55:9)2)	
0000 0010 0020 0030	5c 26 0 08 00 0 5c 26 0 00 00 0	a 19 6 04 a 19 0 00	55 92 00 02 55 92 00 00	c4 71 c4 71 c0 a8 00 00	fe 45 fe 45 01 03 00 00	73 al 73 al 00 00 00 00	08 06 c0 a8 00 00	5 00 (3 01 () 00 (01 \ 01 . 00 \	(&U (&U	q. q.	ES ES							

Заполните приведённую ниже таблицу данными второго захваченного пакета ARP.

Поле	Значение
МАС-адрес отправителя	
IP-адрес отправителя	
МАС-адрес назначения	
IP-адрес назначения	

Шаг 3: Проанализируйте задержки сети, вызванные ARP.

а. Очистите записи ARP на ПК-А.

1

- b. Начните захват данных программой Wireshark.
- с. Отправьте эхо-запрос с помощью команды ping на коммутатор S2 (192.168.1.12). Эхо-запрос с помощью команды ping, отправленный после первого эхо-запроса, должен быть успешным.

Примечание. Если все эхо-запросы успешны, необходимо перезагрузить коммутатор S1, чтобы просмотреть задержки сети из-за ARP.

```
C:\Users\User1> ping 192.168.1.12
Request timed out.
Reply from 192.168.1.12: bytes=32 time=2ms TTL=255
Reply from 192.168.1.12: bytes=32 time=2ms TTL=255
Reply from 192.168.1.12: bytes=32 time=2ms TTL=255
Ping statistics for 192.168.1.12:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
```

ſ

```
Approximate round trip times in milli-seconds:
Minimum = 1ms, Maximum = 3ms, Average = 2ms
```

- d. После отправления эхо-запросов с помощью команды ping остановите захват данных программой Wireshark. С помощью фильтра отобразите только данные ARP и ICMP. В поле **Filter:** (Фильтр) программы Wireshark введите **arp** или **icmp**.
- е. Изучите захваченные данные. В данном примере кадр 10 это первый ICMP-кадр, отправленный с ПК-Б на коммутатор S1. Поскольку для коммутатора S1 нет записи ARP, на IP-адрес управления коммутатора S1 был отправлен ARP-запрос на получение MAC-адреса. В процессе обмена данными ARP эхо-запрос с помощью команды ping не получил отклик за отведённое время (кадры 8–12).

После добавления записи ARP для коммутатора S1 в ARP-кэш последние три обмена данными ICMP были успешны, о чем свидетельствуют кадры 26, 27 и 30–33.

Как показано в захвате данных Wireshark, ARP — это яркий пример компромисса производительности. При отсутствии кэша протокол ARP должен непрерывно запрашивать трансляцию адресов каждый раз при помещении кадра в сеть. В этом случае для установления связи прибавляется время ожидания, что может вызвать перегрузку локальной сети.

<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>G</u> o	<u>Capture</u> <u>A</u> nalyze <u>S</u> t	atistics Telephony	<u>T</u> ools <u>I</u> nterr	nals <u>H</u> el	р				
0 () 📕 📕 🖉	🕒 🗋 🗶 🛃	् 🗢 🔿 🖥	2 🗉) 🖭	M 🗹	8 💥 🕅	
Filter:	arp or icmp			▼ E	Expression.	Clear	Apply	Save		
No.	Time	Source	Destination	Protocol L	Length I	Info				
8	1.649929000	Dell_19:55:92	Broadcast	ARP	42	Who has	5 192.	168.1.12	? теll 192.	.168.1.3
9	1.651202000	Cisco_59:91:c0	Dell_19:55:92	ARP	60 :	192.168	3.1.12	is at O	0:23:5d:59:	91:c0
10	1.651489000	192.168.1.3	192.168.1.12	ICMP	74	Echo (p	ping)	request	id=0x0001,	seq=1873
11	1.653790000	Cisco_59:91:c0	Broadcast	ARP	60	Who has	5 192.	168.1.3?	Tell 192.1	168.1.12
12	1.653999000	Dell_19:55:92	Cisco_59:91:c0	ARP	42 :	192.168	3.1.3	is at 5c	:26:0a:19:5	5:92
26	6.562409000	192.168.1.3	192.168.1.12	ICMP	74	Echo (p	ping)	request	id=0x0001,	seq=1874
27	6.564426000	192.168.1.12	192.168.1.3	ICMP	74	Echo (p	ping)	reply	id=0x0001,	seq=1874
30	7.560977000	192.168.1.3	192.168.1.12	ICMP	74	Echo (p	oing)	request	1d=0x0001,	seq=1875
31	7.563586000	192.168.1.12	192.168.1.3	ICMP	/4	Echo (p	oing)	reply	1d=0x0001,	seq=18/5
32	8.559352000	192.168.1.3	192.168.1.12	ICMP	/4	Echo (p	oing)	request	1d=0x0001,	seq=18/6
33	8.560466000	192.168.1.12	192.168.1.3	ICMP	/4	Echo (p	oing)	reply	1d=0x0001,	seq=18/6
×			III							•
🕀 Fra	ame 8: 42 byt	tes on wire (336	bits), 42 byte	s capture	ed (336	bits)	on int	terface O)	
🕀 Et	nernet II, Sr	rc: Dell_19:55:92	2 (5c:26:0a:19:	55:92), D	ost: Bro	oadcast	(ff:t	ff:ff:ff:	ff:ff)	
🗆 Ad	dress Resolut	tion Protocol (re	equest)							
	Hardware type	e: Ethernet (1)								
1	protocol type	e: IP (0x0800)								
	Hardware size	e: 6								
	protocol size	e: 4								
	<pre>>pcode: reque</pre>	est (1)								
	Sender MAC ac	ddress: Dell_19:	55:92 (5c:26:0a	:19:55:92	2)					
	Sender IP ado	dress: 192.168.1	.3 (192.168.1.3)						
-	Farget MAC ac	ddress: 00:00:00	_00:00:00 (00:0	0:00:00:0	0:00)					
-	Target IP add	dress: 192.168.1	.12 (192.168.1.)	12)						
0000	ff ff ff ff	ff ff 5c 26 0a	19 55 92 08 06	5 00 01		\&U.				
0010	08 00 06 04	00 01 5c 26 0a	a 19 55 92 c0 a8	3 01 03		\&U				
0020	00 00 00 00	00 00 c0 a8 01	. 0c							

Вопросы на закрепление

- 1. Как и когда удаляются статические записи ARP?
- 2. Зачем добавить статические записи ARP в кэш?

3. Если ARP-запросы способны вызывать задержки сети, почему не рекомендуется снимать ограничения на время ожидания отклика для записей ARP?

Сводная таблица интерфейса маршрутизатора

Общие сведения об интерфейсах маршрутизаторов				
Модель маршрутизатора	Интерфейс Ethernet #1	Интерфейс Ethernet #2	Последовательный интерфейс #1	Последовательный интерфейс #2
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
Примечание. Чтобы узнать, каким образом настроен маршрутизатор, изучите интерфейсы для				

определения типа маршрутизатора и количества имеющихся на нём интерфейсов. Не существует эффективного способа перечислить все комбинации настроек для каждого класса маршрутизаторов. Эта таблица включает в себя идентификаторы возможных сочетаний Ethernet и последовательных интерфейсов в устройстве. В таблицу интерфейсов не включены иные типы интерфейсов, даже если они присутствуют на каком-либо определённом маршрутизаторе. В качестве примера можно привести интерфейс ISDN BRI. Строка в скобках — это принятое сокращение, которое может использоваться в командах IOS для представления интерфейса.